AN IMPLEMENTATION OF SPATIO-TEMPORAL ANNOTATED CONSTRAINT
LOGIC PROGRAMMING (STACLP)

Claudia ZEPEDA, David SOL
{sc098382, sol}@mail.udlap.mx
Universidad de las Américas-Puebla
San Andrés Cholula, Puebla, México, MEXICO

ABSTRACT

!n this paper we present important aspects throughout the
implementation of Spatio-Temporal Annotated Constraint
Log!c Programming (STACLP), in which temporal and
spatial data are represented by means of annotations that
labe! atomic first order formulae. The reason to perform
the_lmplementation is due to that there is not software
favallable for STACLP. At the same time, we explore the
implementation of STACLP to obtain experience and to
Iea::n frqm it. This implementation uses XSB system to
verify it ~as a good alternative of knowledge
representation.

KEY WORDS
Constra.int Logic  Programming, Spatio-Temporal
Reasoning, Knowledge Representation.

1. INTRODUCTION

One of the most promising directions of the current
researc_h in GIS field focuses on the development of
reasoning formalisms that merge contributions from both
Amﬁgnal Intelligence (AI) and mathematical research
areas m.order to express spatial qualitative reasoning. In
recent literature [1] [2] [3] [4], there has been a great
interest in studying spatial concepts from a cognitive
point of view, giving rise to Qualitative Spatial Reasoning
as a new research area between Al and GIS. Qualitative
Spatlal. Representation addresses different aspects of
space including topology, orientation, shape, size, and
dxstanc_e. Qualitative Spatial Reasoning also has been
recognized as a major point in the future developments of
GIS [1] [2] [3] [4]. It has been claimed that today GIS
technology is capable of efficiently storing terabytes of
data, but the key point is to abstract away from the huge
amount of numerical data and to define formalisms that
allow the user to specify qualitative queries. In [1] [2] [3]
[4] is showed how the approach of expressing Spatio-
Temporal Reasoning on geographical data is useful and
they introduce STACLP Spatio-Temporal Annotated
Constraint Logic Programming (STACLP) where
temporal and spatial data are represented by means of
annotations that label atomic first order formulae. For
example, if we assume that a transport is described by its

name, the kind of things it transports and its spatial
position(s) in certain time interval, using STACLP we can
model information like Bus! transports people, it is
parked from 10am to 12am, and it is working from 12am
to S5pm in some places of Calpan town but it is loading
people between Ipm to 2pm.

In this paper are presented some important aspects
throughout the implementation, using XSB system, of
STACLP. The reason to perform the implementation is
because up to this time there is not a software available
for STACLP and using XSB looks to be a very interesting
and useful way to explore STACLP and to learn from it.
And at the same time, we can verify XSB system as an
alternative of knowledge representation.

The paper is organized as follows. In Section 2, it is
presented STACLP which combines spatial and temporal
annotations and its semantics, and in Section 3, it is
presented some features of XSB considered as necessary
for the implementation of the meta-interpreter of
STACLP. In Section 4 are showed some important
aspects throughout the implementation, using XSB, of the
meta-interpreter for STACLP and in this same section
some examples of queries involving spatial and temporal
knowledge are formulated in our implemented meta-
interpreter. Finally, in Section 5, the conclusions are
discussed and possible future work.

2. SPATIO-TEMPORAL ANNOTATED
CONSTRAINT LOGIC PROGRAMMING

In [4] was introduced an extension to Temporal
Annotated Constraint Logic Programming (TACLP)
where both temporal and spatial information can be dealt
with and reasoned about. The resulting framework was
called Spatio-Temporal Annotated Constraint Logic
Programming (STACLP), where temporal and spatial data
are represented by means of annotations that label atomic

first order formulae.

S. Levachkine, ). Serra & M. Egenho fer (Eds.) - ISBN: 970-36-0103-0

221



© Zepeda et a/ GEOPRO 2003 - ISBN: 970-36-0103-0

Time can be discrete or dense. Time points are totally
ordered by the relation <. We denote by t the set of time
points and we supposc to have a set of operations to
manage such points. A time period 1is an interval [r,s]
with r, s t and 0 r <s < o which represents the
convex and non-empty sct of time points { 1 | r<t<s}.
Analogously, space can be discrete or dense and we
consider as spatial regions rectangles represented as
[(x1,x2), (y1.y2)] which are intended to model the region
{(xy) | xI<x<x2}, {yl <y <y2} [4].

In [1] is defined an annotated formula as a formula with
the form Aa, where 4 is an atomic formula and a is an
annotation. Also are defined three kinds of temporal and
spatial annotations:

at T and atp (X,Y) are used to express that a formula
holds in a time point or in a spatial point.

th /, thr R are used to express that a formula holds
throughout, i.e. at every point, in the temporal interval or
the spatial region, respectively.

in J, inr R are used to express that a formula holds at
some point(s), in the temporal interval or the spatial
region, respectively.

On the other hand, in [1] is showed that the lset‘of

annotations is endowed with a partial order relation (5)_
which turns it into a lattice. Given two annotations a and

B, the intuition is that @ P if o is "less informative" than
B in the sense that for all formulae A, AB = Aa. This
partial order is used in the definition of new inference
rules. In addition to Modus Ponens, STACLP has the two
inference rules below:

rude(C)

Ac Yoo :

i |

f

Ao AﬁA,Y y=ollfR ?“lee(U)

The rule (g) states that if a formula holds with some

annotation, then it also holds with all annotations that are
I |
smaller according to the lattice ordering. The rule M

says that if a formula holds with some annotation and the
same formula holds with another annotation P then it
holds with the least upper bound a. B of the two
annotations. We can find the constraint theory for
temporal and spatial annotations in [1].

The class of annotations which combines spatial and
temporal annotations was introduced in [4].

Definition (Spatio-Temporal Annotations). The class of
Spatio-Temporal annotations is the pairing of the spatial
annotations Spat built from atp, thr and inr and of the
temporal annotations Temp, built from at, th and in,
i.e. Spat*Temp.

.54

For technical reasons related to the properties of
annotations, in [4] is restricted the rule - only to least
upper bounds that produce regions which are rectangles
and the temporal components are time periods. Thus there
are six cases considered. Here, only present the first case
where last upper bound is considered and the other five
cases can be found in [4].

;thr[(a:hag),(y,,ye)]th[tl,tgl (] 1
\thr((ay, #2), (21, 72)|thl#, ¢o] = |

Ethr[(a;,wg), (yl,&'g)]thlth tQ] = ~
Cwla,n Sy, S

This axiom allows one to enlarge the region in which a
property holds in a certain interval. If a property A holds
both throughout a region R/ and throughout a region R2
in every point of the time period I then it holds throughout
the region which is the union of R/ and R2, throughout I.
Notice that the constraints on the spatial variables ensure
that the resulting region is still a rectangle.

The clausal fragment of STACLP, which can be used as
an efficient Spatio-Temporal Programming Language,
consists of clauses of the following form [1]:

Aaﬁ (—- 01,. . .,Cn,Biaiﬂh. - ,Bma"ﬁm

where n, m 2 0, 4 is an atom (not a constraint), o, ai, B,
Bi are (optional) temporal and spatial annotations, the Cj's
are constraints and the Bi's are atomic formulae.
Constraints Cj cannot be annotated. A STACLP program
is a finite set of STACLP clauses.

Semantics of STACLP
The definition of the semantics for STACLP is as follows

[1]:

e It is assumed that all atoms are annotated with th, in,
thr or inr labels. In fact, at t and atp(x,y)
annotations can be replaced with th[t,t] and thr
[(x,x),(y,y)] respectively by exploiting the (at th) and
(atp thr) axioms.

e Each atom in the object level program which is not

two-annotated, i.e., which is labeled by at most one
kind of annotation, is intended to be true throughout
the whole lacking dimension(s). For instance an atom
A thr R is transformed into the two-annotated atom
A thrR th [0, ].

e  Constraints remain unchanged.

e The meta-interpreter for STACLP is defined by the
following clauses:



- demo(empty)

i dcmoE(B;,Bg)) — dcmo(.91 ), dcmO(BQ)
demo(Aaf) — aC 5,8 Coy,

| clause( A b, B), demo(B)

| demo(Ac'f) — oy By U onfy = of, |
| o'C o, f'C B, clause(A aufy,B), |
| demo(B), demo(Acfy) |
Idcmo((O)) « constraint(C), C 3

* A clause Aaf«B of a STACLP program is re-
presented at the meta-level by

'ciawc(}iaﬂ,B) — valid(e), valid(f)

where valid is a predicate that checks whether the
interval or the region in the annotation is not empty.

The resolution rule, third clause, implements both the

Modus Ponens rule and the rule @ It contains two
relational constraints on annotations, which are processed
by the constraint solver using the constraint theory for
temporal and spatial annotations mentioned in Section

2.2. Fourth clause implements the rule (1) combined
with Modus Ponens and rule @ The constraint

o161 Uosfy = of in such a clause is solved by means
of the axioms defining the least upper bound mentioned in
Section 2.3. Fifth clause manages constraints by passing
them directly to the constraint solver.

3. SYSTEM XSB

We used XSB system to implement the meta-interpreter

for STACLP defined in Section 2.5. In this Section we

present some features of XSB considered as necessary for
the implementation of the meta-interpreter.

XSB is a Logic Programming and Deductive Database

system for Unix and Windows. In addition to providing

all the functionality of Prolog, XSB contains several
features not usually found in Logic Programming

systems, including [6):

*  Constraint handling for tabled programs based on an
engine-level implementation of annotated variables
and a package, clpqr, for handling real constraints.

* A number of interfaces to other software systems,
such as C, Java, Perl, ODBC, SModels, and Oracle.

® Preprocessors and Interpreters so that XSB can be
used to evaluate programs that are based on advanced
formalisms, such as extended logic programs
(according to the Well-Founded Semantics [9]);
Generalized Annotated Programs [7]; and F-Logic.

Prolog is based on a depth-first search through trees that
are built using program clause resolution (SLD) [5]. As
such, Prolog is susceptible to getting lost in an infinite

© Zepeda et a/GEOPRO 2003 - ISBN: 970-36-0103-0

branch of a search tree, where it may loop infinitely. SLG
evaluation, available in XSB, can correctly evaluate many
such logic programs if they are compiled as a tabled
predicate. The user can declare that SLG resolution is to
be used for a predicate by using table declarations.
Alternately, an auto_table compiler directive can be used
to direct the system to invoke a simple static analysis to
decide what predicates to table.

4. IMPLEMENTATION OF THE
META-INTERPRETER

In this Section we present some important aspects
throughout the implementation using XSB of the meta-
interpreter for STACLP, defined in Section 2.5, and some
examples of queries involving spatial and temporal
knowledge.

Implementation using XSB

Below we show the main code of the meta-interpreter for
STACLP, the total number of code lines is about 300.

:- auto_table.
demo(true).
demo(((B1,Alfal Betal),(B2,Alfa2,Beta2))) :-
demo((B1,Alfal,Betal)),demo((B2,Alfa2,Beta2)).
demo((A,Alfa,Beta)) :-
contR(Alfa,Delta),contT(Beta,Gama),
clausel ((A,Delta,Gama),B),demo(B).
demo((A,Alfap,Betap)) :-
une(Alfal,Betal,Alfa2, Beta2,Alfa,Beta),
contR(Alfap,Alfa),contT(Betap,Beta),
clausel (A, Alfal,Betal),B),demo(B),
demo((A,Alfa2,Beta2)).

clausel ((A,Alfa, Beta),B) :-
claus((A,Alfa,Beta),B),
validaR (Alfa), validaT(Beta).

The clauses contR and contT correspond to the rule (=
Space and Time respectively mentioned in Section 2.2.

Clause une implements the rule (1) of Section 23. In
Section 2.5 we described that at 7 and atp(x,y) annotations
can be replaced with th /17 and thr [(xx).(.))]
respectively by exploiting the (at th) and (atp thr)
axioms. However, it is necessary highlight that a
consequence of this replacement is that (at th), (atp thr),
(at in) and (atp inr) axioms can be rewritten as the two

next axioms

(thin) th[#f]=in [tt]
(thr inr) thr[(x.x),(y,y)] = in[(x,X),(y,¥)]

because are the link between (th) annotation and .(in)
annotation or between (thr) annotation and (inr)

223



© Zepeda et a/ GEOPRO 2003 - ISBN: 970-36-0103-0

respectively. So, these two axioms were implemented
instead of the other four axioms.

On the other hand, we can see as the first clause
auto table, because without it there would be some cases

where XSB may loop infinitely.

Examples .
In this section we present some examples which

illustrate how spatial data are modeled by annotations and
integrated with temporal information using the
implemented meta-interpreter.

Volcano Zone . _
This example describes spatial and temporal information

in the context of Popocatépetl volcano. Decision making
is a very important activity in this context. About 200,000
people distributed in 50 towns are in danger when the
volcano starts its activity. "Plan Operativo Popocatépet]”
office in Puebla has the responsibility of coordinating the
actions to keep the integrity of the people. This office
uses printed maps and printed reports to decide the best
sequence of actions in case of danger. Usually it is
difficult to justify the decisions because they do not have
enough information. Our example describes the activity of
buses. We assume that a transport is described by its
name, the kind of things it transports and its spatial
position(s) in certain time interval. For instance, Busl
transports people and it is parked from 10am to 12am, and
it is working from 12am to 5pm in some places of Calpan
town but it is loading people between Ipm to 2pm. This
can be expressed by means of the following clauses in our
implemented meta-interpreter.

claus(transport(busl,people),true ).
claus((does(bus1,parking), inr(3,3,4,4),th(10,12),true).
claus((does(bus1,working), inr(1,2,2,3),in(12,17)),true).
claus((does(busl,loading),thr(1,1,2,2),th(13,14)),true).

claus(transport(bus2,people),true ).
claus((does(bus2,working), inr(3,4,4,7),th(10,12)),true).
claus((does(bus2,loading), thr(l,1,2,2),th(14,15)),true).

Furthermore, a fown can be described by its name and its
area represented by thr annotation. The temporal
information for a town is represented by th(0,24)
annotation because, as we know, a town is all the time in
the same spatial position.

claus((town(huejotzingo), thr(3,4,4,7),th(0,24)),true).
claus((town(calpan), thr(1,2,2,3),th(0,24)),true).

Now we show how some queries, involving the spatial
and temporal knowledge, can be formulated:

*  Which buses did load at Calpan between 12am and

3pm?
demo(((does(X,loading),inr(R),in(12,15))town(calpan),
thr(R), th(_)) )

224

X = busl
X = bus2

The answer to this query consists of all the buses that
were loading at Calpan during that time period. The
region of Calpan is assigned to the variable R and then is
solved which buses were loading in some place of that
region. We use in annotation because we want to know all
the different positions of every bus between 12am and
3pm while the inr annotation allows one to know the
region every bus is in during that time period, even if its
exact position is unknown.

If we asked for

demo(( (does(X,loading), atp(R), th(12,15)),
(town(calpan), thr(R), th( ) )).

then we would have constrained buses to stay in only one
place, in this example Calpan town, for the whole time
period.
The query
demo(( (does(X,loading),atp(R), in(12,15)),
(town(calpan), thr(R), th()) )).

asks buses which are in definite positions sometime in
(12, 15).

e  Which buses were working or parked in Huejotzingo
before 12am?
demo(( (does(X,working), inr(R), in(0,12)),
(does(X,parking),inr(R),in(0,12)),
(town(huejotzingo),thr(R), th( )) )).
X =busl
X =bus2

The result are all the buses that were working or parked in
the region, assigned to variable R, that corresponds to
Huejotzingo town, before 12am.

In Section 4.1, we saw that in the implementation of the
meta-interpreter the first clause is auto_table, and it was
necessary because without it there would be some cases
where XSB may loop infinitely. An example of this
situation occurs if the query to resolve is about some
inexistent information. If we use the same information of
the last example and we formulate the query Is Bus2
parked at Atlixco? in this case there is not information
about where is Atlixco town so it leads to an infinity loop.
The reason of the infinity loop, in this example, is because
the meta-interpreter tries to resolve the clauses contR or

) |
contT corresponding to the rule @ to Space or Time
mentioned in Section 2.2., and when it fails, it tries to
resolve the query once and again.



S. CONCLUSION

Thanks to the implementation of STACLP we could
realize that the axioms about (at th), (atp thr), (at in) and
(tp inr) can be replaced for the next two: (th in), (thr
inr). We used XSB system, because we consider that it
has the necessary features for the implementation of the
m.eta-interpreter. Finally, it would be interesting to cope
with an interface using Natural Language to specify
queries. More ideas about the evolution of STACLP are in

(1] [2] [3] [4].

4. ACKNOWLEDGEMENT

Th-is work has been supported by the Mexican Council of
Science and Technology (CONACYT) W 35804- A.

REFERENCES

[1] A. Raf:faeté, C. Renso, F. Turini, Qualitative
Reasoning in a Spatio-Temporal Language, CRGD

Workshop 2001, http://www-kdd.cnuce.cnr.it/crgd/

© Zepeda et a/GEOPRO 2003 - ISBN: 970-36-0103-0

[2] C. Renso, A. Raffactdi. Temporal Reasoning in
Geographical Information Systems. DEXA Workshop,
2000, 899-905.

[3] P. Mancarella, G. Nerbini, A.Raffaeta, F.Turini,
MuTACLP: A Language for Declarative GIS Analysis,
Computational Logic, 2000, 1002-1016

[4] A.Raffactd and T. Frihwirth, Spatio-Temporal
Annotated Constraint Logic Programming, PADL 2001,
2001, 1990, 259-273.

[5] W. Chen and D. S. Warren, Tabled Evaluation with
Delaying for General Logic Programs, Journal of the
ACM,43(1), 1996, 20-74

[6]D. S. Warren, Applications of logic databases.
Programming the PTQ Grammar in XSB (Ed.: Raghu
Ramakrishnan, Kluwer Academic Publishers, USA.
1995).

[7] M. Kifer, V. S. Subrahmanian, Theory of
generalized annotated logic programming and its
applications, J. Logic Programming, 12(4), 1992, 335-
368.

[9] J. Alferes, C. Damasio, and L. Pereira, SLX: a top-
down derivation procedure for programs with explicit
negation, International Logic Programming Symp., 1994,

424-439.

225



